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Recent observations of record low winter sea-ice coverage and warming water
temperatures in the eastern Bering Sea have signaled the potential impacts of
climate change on this ecosystem, which have implications for commercial fisheries
production. We investigate the impacts of forecasted climate change on the eastern
Bering Sea food web through the end of the century under medium- and high-
emissions climate scenarios in combination with a selection of fisheries management
strategies by conducting simulations using a dynamic food web model. The outputs
from three global earth system models run under two greenhouse gas emission
scenarios were dynamically downscaled using a regional ocean and biogeochemical
model to project ecosystem dynamics at the base of the food web. Four fishing
scenarios were explored: status quo, no fishing, and two scenarios that alternatively
assume increased fishing emphasis on either gadids or flatfishes. Annual fishery
quotas were dynamically simulated by combining harvest control rules based on
model-simulated stock biomass, while incorporating social and economic tradeoffs
induced by the Bering Sea’s combined groundfish harvest cap. There was little
predicted difference between the status quo and no fishing scenario for most
managed groundfish species biomasses at the end of the century, regardless of
emission scenario. Under the status quo fishing scenario, biomass projections for
most species and functional groups across trophic levels showed a slow but steady
decline toward the end of the century, and most groups were near or below recent
historical (1991–2017) biomass levels by 2080. The bottom–up effects of declines
in biomass at lower trophic levels as forecasted by the climate-enhanced lower
trophic level modeling, drove the biomass trends at higher trophic levels. By 2080,
the biomass projections for species and trophic guilds showed very little difference
between emission scenarios. Our method for climate-enhanced food web projections
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can support fisheries managers by informing strategic guidance on the long-term
impacts of ecosystem productivity shifts driven by climate change on commercial
species and the food web, and how those impacts may interact with different fisheries
management scenarios.

Keywords: Bering Sea, climate change, fisheries, food web, Rpath

INTRODUCTION

Climate change is rapidly affecting marine species and ocean
ecosystems worldwide (Hoegh-Guldberg and Bruno, 2010;
Poloczanska et al., 2013) by warming water temperatures,
increasing stratification, reducing dissolved oxygen, and altering
nutrient supplies and thereby primary production (Bopp et al.,
2013; Boyce and Worm, 2015; Cheng et al., 2019). This in turn
limits production at higher trophic levels (Ryther, 1969; Iverson,
1990), including production that supports fisheries (Pauly and
Christensen, 1995; Chassot et al., 2010; Stock et al., 2017). Climate
change directly affects organisms at the individual level through
impacts on physiological processes and behavioral responses,
altering rates of somatic growth, mortality, and reproduction
(Portner and Peck, 2010). These individual impacts are
transmitted to higher levels of community organization through
altered population growth rates, species distribution, community
composition, and predator-prey interactions (Cheung et al., 2009;
Rijnsdorp et al., 2009; Doney et al., 2012; Pinsky et al., 2013). The
accumulation of these impacts affects the structure, function, and
productivity across all levels of a food web (Kortsch et al., 2015;
Sydeman et al., 2015).

Marine ecosystems are also simultaneously subject to the stress
of fisheries, which reduces the abundance of target and non-target
species, further altering community composition and species
interactions (Tegner and Dayton, 1999; Steele and Schumacher,
2000; Jackson et al., 2001; Worm et al., 2009). Fishing can also
lead to demographic changes in fish populations that increase
their variability, making them more sensitive to changing climate
conditions (Berkeley et al., 2004; Hsieh et al., 2006; Anderson
et al., 2008; Hidalgo et al., 2011; Shelton and Mangel, 2011).
The impacts of climate change on marine species and ocean
ecosystems have ramifications for dependent communities that
rely on the ocean for nutrition and income, and for the
commercial fishing industry (Sumaila et al., 2011; Allison and
Bassett, 2015).

The impacts of climate change on the ecosystem and the food
web are becoming increasingly visible in the eastern Bering Sea.
Historically, the eastern Bering Sea continental shelf has been
covered by sea ice during winter and early spring, which leaves a
remnant “cold pool” of bottom water (<2◦C) over portions of the
central shelf throughout the summer (Coachman, 1986; Wyllie-
Echeverria and Wooster, 1998; Sullivan et al., 2014). The presence
of the cold pool is a key biophysical feature that limits species
distributions and influences community composition (Mueter
and Litzow, 2008; Stevenson and Lauth, 2012, 2019; Eisner et al.,
2018). Seasonal variation in the presence of sea ice and the cold
pool has important implications for the timing, magnitude, and
community composition of primary and secondary production

(Coyle et al., 2011; Stabeno et al., 2012; Coyle and Gibson,
2017), for the recruitment of commercially important fishes
(Hunt et al., 2011; Duffy-Anderson et al., 2016; Farley et al.,
2016; Cooper et al., 2020), and marine mammal and seabird
habitats (Cooper et al., 2013; Citta et al., 2018). Recent years
(2014–2019) have seen a decline in the duration and coverage
of seasonal sea-ice, a decrease in the size of the cold pool, and
warming water temperatures (Stabeno and Bell, 2019; Baker
et al., 2020; Danielson et al., 2020). These physical changes
altered the phenology, magnitude, and species composition of
the phytoplankton bloom and zooplankton community, changes
which were transmitted up the food web to forage fishes,
including the juvenile stages of commercial species, and to other
higher trophic level predators (Sigler et al., 2016; Duffy-Anderson
et al., 2019; Lomas et al., 2020). The recent reductions in sea
ice coverage and warming water temperatures are in contrast
with the historical record and may portend an impending shift
in ecosystem structure and function (Grebmeier et al., 2006;
Huntington et al., 2020).

Environmental changes associated with warming may have
profound social and economic consequences. The living marine
resources of the eastern Bering Sea are an important source of
nutrition for coastal communities and have significant social
and cultural value (Renner and Huntington, 2014; Gadamus
and Raymond-Yakoubian, 2015). Additionally, the eastern Bering
Sea has several valuable groundfish and crab fisheries (Fissel
et al., 2017), including the fishery for walleye pollock (Gadus
chalcogrammus) which has averaged ∼1.2 million tons in catch
per year since the 1970s (Ianelli et al., 2017) and is the world’s
second largest single-species fishery (FAO, 2019). The North
Pacific Fishery Management Council (NPFMC) manages federal
fisheries in Alaska for valuable fish and shellfish through the
application of a polycentric decision making system founded on
an ecosystem approach to management of groundfish resources
that is informed by a Fisheries Ecosystem Plan (NPFMC, 2019).
Two elements of the ecosystem approach to fishery management
used by the NPFMC are particularly relevant to this paper: a
2 million metric ton (MMT) overall cap on annual groundfish
removals; and the use of a precautionary harvest control rule that
includes a buffer between the target and limit fishing mortality
rates. In addition, for most species targeted in the fishery,
a sloping control rule is applied where-in fishing mortality
is reduced when the spawning stock biomass drops below
the target biomass level, which is higher than the biomass
that can produce the maximum sustainable yield (Bmsy or its
proxy) (NPFMC, 2018).

The NPFMC’s Fishery Ecosystem Plan informs management
by projecting future stock status and ecosystem conditions that
consider the interacting effects of climate change and fisheries
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on target and non-target species, food webs, and tradeoffs in
different ocean uses to make informed decisions on sustainable
resource exploitation (Spencer et al., 2019; Hollowed et al.,
2020; Holsman et al., 2020; Reum et al., 2020). The Alaska
Climate Integrated Modeling Project (ACLIM) was initiated by
NOAA’S Alaska Fisheries Science Center to investigate these
types of questions for the eastern Bering Sea (Hollowed et al.,
2020). ACLIM is an integrated modeling program that links
outputs from a selection of global earth system models run under
Intergovernmental Panel on Climate Change (IPCC) climate
scenarios to a suite of biological models to investigate the
potential impacts of forecasted climate change on fish, fisheries,
and the ecosystem of the eastern Bering Sea (Hollowed et al.,
2020). The multi-model approach of ACLIM allows for joint
consideration of the strengths and weaknesses of different model
structures and facilitates the examination of different sources of
uncertainty in projection results.

We developed an Ecopath with Ecosim model (EwE1,
Christensen and Pauly, 1992; Christensen and Walters, 2004)
of the eastern Bering Sea to investigate the potential impacts
of forecasted climate change on species and the food web,
and the interactive effects of different fisheries management
scenarios and climate change on modeled outcomes. The ACLIM
modeling framework incorporates a coupled regional ocean and
biogeochemical model to project future ocean conditions and
lower trophic level dynamics (Hollowed et al., 2020). Forecasted
climate change is expected to impact water temperatures, sea ice,
phytoplankton, and lower trophic levels in the eastern Bering
Sea (Wang et al., 2012; Hermann et al., 2019), and will have a
bottom–up impact on the broader food web. There are many
variables that could potentially be affected by climate change.
Due to the anticipated changes at the base of the food web, we
incorporate climate change impacts into food web simulations
by representing the biomass of primary and secondary producer
groups with projections from the climate-enhanced lower trophic
level modeling. This approach specifically examines the bottom–
up effects of changing biomass at lower trophic levels due to
climate change, and how these changes may be transmitted up
the food web to consumer groups via their trophic linkages.

Here we use our climate-enhanced dynamic food web model
to ask how the impacts of forecasted climate change on lower
trophic levels may affect species and the broader food web in the
eastern Bering Sea, and how might those responses change under
alternative climate change and fishery management scenarios?
We incorporate a fisheries sub-model into our simulations
that provides dynamic projections of annual catch quotas for
US federally managed groundfish in the eastern Bering Sea
in response to the changing status of managed stocks and in
accordance with the existing fisheries management paradigm.
Our primary objective was to project the biomass and catch of
commercially important species and the biomass of trophic guilds
to examine a range of possible outcomes at the end of the century
for individual species and the food web under forecasted climate
change and the prescribed fishing scenarios. Biomass trajectories
of marine mammals and seabirds are also projected, many of

1ecopath.org

which are protected species or whose well-being is thought to be
an indicator of food web status (Sydeman et al., 2017).

MATERIALS AND METHODS

Modeling Approach
Our modeling approach was to use the outputs from multiple
earth system models, each run under a selection of climate change
scenarios, to drive a regional ocean and biogeochemical model
(Figure 1). The projected conditions from the oceanographic
lower trophic level model are then used as inputs to represent
climate change in the food web model. The food web model
was linked to a fisheries sub-model that incorporates social and
economic tradeoffs into dynamic predictions of catch quotas
under different fisheries management scenarios based on the
existing fisheries management paradigm. We cover each of these
components of the modeling framework below.

Simulating Climate Change
The earth system models we use are selected from the Climate
Model Intercomparison Project phase 5 (CMIP5; Taylor et al.,
2012) and include, the Geophysical Fluid Dynamics Laboratory
Earth System Model 2M (GFDL-ESM2M, Dunne et al., 2012), the
National Center for Atmospheric Research (NCAR) Community
Earth System Model (CESM, Kay et al., 2015), and the Model for
Interdisciplinary Research on Climate (MIROC-ESM, Watanabe
et al., 2011). These models were selected because they represent
the breadth of simulation outcomes present in the suite of models
included in CMIP5, and for their performance within the Bering
Sea study region (Hermann et al., 2019). The earth system models
were driven with two representative concentration pathways
(Moss et al., 2010) from the IPCC Fifth Assessment Report
(AR5). These pathways describe different trajectories for future
greenhouse gas emissions, mitigation, and subsequent climate
change. Two global emission scenarios were considered: RCP 8.5,
which represents an unmitigated pathway with high greenhouse
gas emissions; and RCP 4.5, which represents an intermediate
level of mitigation and greenhouse gas emissions.

We simulate production dynamics of lower trophic level
functional groups using a regional ocean circulation model based
on a Regional Ocean Modeling System (ROMS) domain coupled
to a lower trophic level biological model developed during
the Bering Sea Ecosystem Study (BEST) Program (Gibson and
Spitz, 2011) and later improved in various versions (Hermann
et al., 2016; Kearney et al., 2020). The coupled biophysical
model covers the Bering Sea with 10-km horizontal resolution
(Bering 10K ROMS/BEST-NPZ, Hermann et al., 2016; hereafter
referred to as “Bering 10K”). Bering10k is driven at the sea
surface and ocean lateral boundaries by variables from the
coarse resolution global earth system models mentioned above,
and integrated continuously in time from 2006 to 2100; in
this way, the biophysical state of the Bering Sea from the
various earth system model forecast scenarios is dynamically
downscaled. More details of the Bering10K and its use as a
tool for dynamic downscaling can be found in Hermann et al.
(2019). Because our food web model is not spatially discrete,
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FIGURE 1 | Overview of the ACLIM modeling framework as implemented with our food web model. The outputs from three earth system models, each driven by
two IPCC AR5 climate scenarios (RCP 4.5 and 8.5), are dynamically downscaled and used to drive a regional ocean and biogeochemical model through the end of
the century. The outputs from the lower trophic level modeling are used to simulate the biomass dynamics of phytoplankton and zooplankton groups in the food web
model. The food web model is coupled to a fisheries sub-model that dynamically predicts annual commercial fisheries catch in response to the simulated stock
status and under four different quota allocation scenarios.

monthly averages over our study area were extracted from the
BESTNPZ output (Holsman et al., 2020) to represent biomass
dynamics for small and large phytoplankton, pelagic and benthic
microbes, copepods, and euphausiids in our food web model (see
Supplementary Material).

Outputs from the reanalysis-forced BESTNPZ hindcast
(Hermann et al., 2013, 2016) were used to force the trophic
dynamics model from 1991 to 2017. Outputs from the CMIP5-
forced BESTNPZ forecasts were used to simulate future climate
scenarios over the period 2006 to 2099. The BESTNPZ outputs
used for projections (2018–2099) were bias-corrected using
differences in monthly mean and variability between the hindcast
and projections during the overlapping period (2006–2017; Ho
et al., 2012; Hawkins et al., 2013; see Supplementary Material
and Supplementary Figure 1). The downscaled runs with the
CESM model under RCP 4.5 did not go beyond 2080, so we
limit our analysis of the RCP 4.5 simulations to 2080 and earlier,
and any comparisons between RCP 4.5 and RCP 8.5 are also
limited to 2080.

Food Web Model
We use Ecopath with Ecosim (EwE) to model the food web of
the eastern Bering Sea. EwE is a biomass compartment model
that integrates information on species biomass, production,
consumption, diet composition, and mortality to describe the
network of connections and material flows between groups in
a food web (Polovina, 1984; Christensen and Walters, 2004).

The equations and algorithms underlying the EwE framework
are thoroughly documented elsewhere (e.g., Walters et al., 1997;
Christensen and Walters, 2004). For our analysis we use Rpath2

(Lucey et al., 2020, 2021), an independent version of EwE that
uses the same equations and algorithms of EwE but is developed
for use with the open source statistical program R (R Core Team,
2015). Using Rpath also allows us to use a region-specific fisheries
sub-model that dynamically predicts fisheries catch based on
harvest control rules and model-simulated stock biomass, that
has also been developed for use with R (more in Fisheries
Scenarios below, Faig and Haynie, 2019).

We use a previously published EwE model of the eastern
Bering Sea that was calibrated to the early 1990s (1990–1994) and
constructed on a scale that reflects existing fishery management
regions and coincides with known distributions of several
commercial groundfish stocks (Aydin et al., 2007). The region
of study includes the continental shelf and upper continental
slope waters between 25 and 1000 m depth, encompassing an
area of ∼495,000 km2 (Figure 2). The model was informed by
decades of data collected in the eastern Bering Sea to support
fisheries management and for monitoring protected species,
trophic interactions, and lower trophic levels [see Aydin et al.
(2007) for complete documentation of all model parameters
and data sources].

The model as originally constructed was highly detailed with
129 biological groups, including 14 single-species groups with

2https://github.com/NOAA-EDAB/Rpath
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FIGURE 2 | The area in the eastern Bering Sea described by the EwE model of Aydin et al. (2007).

separate adult and juvenile compartments (a.k.a., stanzas). While
we sought to maintain this level of detail for some commercial
fish and protected species, we aggregated several species into
functional groups with other species of similar life history traits,
food habits, and environmental requirements in the interest of
keeping the model results tractable (Supplementary Table 1).
Functional groups that were aggregated together had their
respective biomasses and fisheries catch summed together. The
P/B, Q/B, and diet composition of the aggregated groups were
averages weighted by the biomass of the original groups. We
reduced the original full model to 72 biological groups, including
five single-species groups with corresponding juvenile groups,
two primary production groups, and three detrital compartments
(pelagic, benthic, and fisheries offal) (Supplementary Table 2).
Aggregating the model did not bring it out-of-balance and no
modifications were necessary. This eastern Bering Sea model was
originally tuned to the reference state of the early 1990s (Aydin
et al., 2007), therefore we initiate our simulations in 1991.

Detritus pools are basal resources supporting the production
of lower trophic levels in a food web (Rooney et al., 2006).
While the biomass of detritus pools are generally unknown, we
tracked the biomass of detritus as it is a key dietary component
for lower trophic levels. Detritus in our food web model comes
from unassimilated food, fishery offal, and mortality from sources
other than predation and fisheries. Rpath calculates the biomass
of detritus (if not provided by user) as the sum of inputs to

detritus divided by the turnover rate of detritus (Lucey et al.,
2020). We did not specify a turnover rate for detritus and used
the Rpath default of 0.5. This made the detritus biomass equal to
twice the detritus input.

Fisheries Catch Scenarios
During the hindcast period (1991–2017) the model was
projected with the actual catch time series for groundfish
and crab species (Cahalan et al., 2014) when such data were
available, and the exploitation rate from the Ecopath model
for components with no historical catch data. Groundfish
catch during the projection period (2018–2099) was predicted
using a fisheries sub-model, which predicted the catch of
federally managed groundfish in the eastern Bering Sea based
on estimates of acceptable biological catch (ABC). The input
ABCs were used to predict the total allowable catch (TAC)
and the TACs are then used to predict catch. The fisheries
sub-model, known as the “ABC to TAC And Commercial
Harvest model,” or ATTACH, and its documentation can be
downloaded from www.github.com/amandafaig/catchfunction.
The catches predicted by ATTACH are based on historical
relationships between the ABCs and observed catch, modeling
the historical practices of the regional fishery management
council for quota setting and redistributing quota between
fisheries sectors and management areas under the 2 MMT
ecosystem harvest cap and the observed abilities of the
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fisheries to catch the allocated quotas. The ATTACH has
previously been used with a multi-species size-spectrum model
of the eastern Bering Sea food web (Reum et al., 2020)
and a multi-species statistical catch-at-age model of walleye
pollock, Pacific cod (Gadus macrocephalus), and arrowtooth
flounder (Atheresthes stomias) (Holsman et al., 2020). Detailed
descriptions of the equations and assumptions in ATTACH
can be found in the source documentation (Faig and Haynie,
2019) and in the appendices of Holsman et al. (2020)
and Reum et al. (2020).

At the end of each year during the projection period (2018–
2099), we calculated ABCs for each of the federally managed
groundfish stocks and commercial crab stocks using a sloped
harvest control rule that mimics that used for actual management
(NPFMC, 2017). We used the Ecopath-based biomass (B) and
exploitation rate (F) as target values in our harvest control
rule (Btarget and Ftarget). Federally managed gadids and flatfish
generally account for about 75% of the ecosystem harvest cap,
and are the species of core interest in this study. The biomass
and catch of gadids and flatfish in 1991 were near long-
term averages, making 1991 a suitable reference year for these
biological reference points. The ABCs are based on stock status
during the simulation, which is evaluated as the ratio of simulated
stock biomass of species i (Bi) to their target biomass (Bi,target):

ABCi =


Bi ∗ Fi,target

Bi ∗ Fi,target∗

(
Bi

Bi,target
−α

)
(1.0−α)

0

, if Bi
Bi,target

≥ 1
, if 0.2 < Bi

Bi,target
< 1

, if Bi
Bi,target

≤ 0.2

(1)
α has a default value of 0.05 and is the intercept to the

sloped harvest control rule where F, and thus ABC, would be
equal to zero (Figure 3). We use a modified harvest control
rule that sets the ABC equal to zero when the simulated stock
status drops below a minimum threshold (Bi/Bi,target ≤ 0.2). This
modified harvest control rule is used in Alaska for pollock and
other groundfish to help maintain prey resources for protected
species (NPFMC, 2018).

At the end of each year during the projection period (2018–
2099), the simulation was paused so we could calculate ABCs for
all the groundfish species (or multi-species complex) managed
under the ecosystem harvest cap (Table 1). The calculated ABC
values were input to the fisheries sub-model, which returned the
predicted catch for those stocks in the next year of the simulation.
The predicted catches were then applied to the next year of the
simulation, and the simulation resumed for one more year.

Given the constraint of the two million ton ecosystem harvest
cap there are several ways that quota could be allocated in the
future. The fisheries sub-model predicts catch under four quota
allocation scenarios that are subject to the ecosystem cap and
have been vetted through the NPFMC (Hollowed et al., 2020):
(1) a status quo scenario that reflects the current practices and
decisions of the fishery management council, and assumes no
significant changes to those practices are made; (2) a gadid
preference scenario with an expansion of pollock and Pacific cod
quota (up to 10% increase) under the cap and at the expense

FIGURE 3 | Schematic of the harvest control rule used to determine the
acceptable biological catch of groundfish subject to the ecosystem harvest
cap. The target biomass (Btarget ) and target exploitation rate (F target ) are the
Ecopath-based biomass and exploitation rate. α is the intercept to the sloped
harvest control rule where fishing mortality, and thus ABC, would be equal to
zero. We use a modified harvest control rule that sets fishing mortality equal to
zero when the simulated stock biomass drops below a minimum threshold of
0.2 Btarget (b).

TABLE 1 | Groundfish species or species complexes managed under the Bering
Sea/Aleutian Islands ecosystem harvest cap.

Species or group name Scientific names

Alaska plaice Pleuronectes quadrituberculatus

Arrowtooth flounder Atheresthes stomias

Atka mackerel Pleurogrammus monopterygius

Flathead sole Hippoglossoides elassodon

Greenland turbot Reinhardtius hippoglossoides

Kamchatka flounder Atheresthes evermanni

Large sculpins Myoxocephalus spp., Hemilepidotus spp., Hemitripterus
bolini [Big mouth sculpin]

Northern rock sole Lepidopsetta polyxystra

Northern rockfish Sebastes polyspinis

Octopi Octopoda

Other flatfish Microstomus pacificus [Dover sole], Glyptocephalus
zachirus [Rex sole], miscellaneous flatfish

Other rockfish Sebastes zacentrus [Sharpchin rockfish], S. ciliatus
[Dusky rockfish], Sebatolobus alascanus [Shortspine
thornyhead], other Sebastes spp.

Pacific cod Gadus macrocephalus

Pacific ocean perch Sebastes alutus

Rougheye rockfish Sebastes aleutianus

Sablefish Anoplopoma fimbria

Sharks Somniosus pacificus [Pacific sleeper shark]

Shortraker rockfish Sebastes borealis

Skates Bathyraja parmifera [Alaska skate], other Bathyraja spp.,
Raja spp.

Squids Teuthoidea

Walleye pollock Gadus chalcogrammus

Yellowfin sole Limanda aspera

of other groundfish fisheries; (3) a flatfish preference scenario
that included an increase in the combined flatfish quota (up to
30%) under the cap and at the expense of pollock and Pacific
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cod; and (4) a scenario where no fishing is allowed. The no
fishing scenario is intended to highlight how species and the
food web may fare in the absence of fishing but still subject to
simulated climate change.

The individual quotas set by the regional fishery management
council, are less than the ABCs determined in the respective stock
assessments. The sum of the groundfish quotas must fit under
the ecosystem cap, so some stocks are fished well below their
respective ABC (Witherell et al., 2000). For example, the quotas
for flatfish have historically been set below their respective ABCs
to allow for larger harvests of pollock and Pacific cod under the
ecosystem cap (Witherell, 1995). The fisheries sub-model reflects
these historical practices when making catch projections. For
example, the catch of arrowtooth flounder and northern rock sole
are both limited to a constant maximum catch as long as their
stock status stays above the threshold biomass (Bi/Bi,target ≥ 1).
However, under the flatfish preference scenario, the constant
maximum catch on northern rock sole can be relaxed when
their biomass is greater than Btarget and the combined ABC of
pollock and Pacific cod is above ∼1.4 million tons. Above that
level, 10% of the predicted gadid catch is reallocated to flatfish
and can increase the catch of northern rock sole above their
constant catch maximum.

Analysis of Results
We focus our analysis on a core group of six species that are
currently of economic and ecological importance in the study
region: walleye pollock, Pacific cod, yellowfin sole (Limanda
aspera), northern rock sole (Lepidopsetta polyxystra), arrowtooth
flounder, and snow crab (Chionoecetes opilio). We track the
biomass trajectories and catch projections for these core species
through the end of the century. Additionally, we track the
biomass of marine mammals and seabirds, whose condition
may be an indicator of food web status and prey availability.
The biomass projections for all functional groups included in
the food web model, and under all scenarios, can be found
in the Supplementary Material. As an indicator of ecosystem
status and food web structure, we also track the biomass of
trophic guilds including, apex predators, benthic foragers, motile
epifauna, pelagic foragers, structural epifauna, shrimp and other
zooplankton, and infauna (Table 2).

Within trophic guilds, we examined the change in biomass
between the end of the hindcast period (2008–2017) and the last
10 years of the projection period (2071–2080) run under both
RCPs. Within each trophic guild, we separated results by earth
system model, RCP, and by fishing scenario. Within each earth
system model-RCP-fishing scenario combination, we looked at
the distribution of the percent change in biomass for functional
groups within each trophic guild. This distribution of outcomes
does not consider any process error arising from inherent
variability in the population dynamics, parameter uncertainty
in our food web model, uncertainty in the implementation of
our quota allocation scenarios, or any error in our observation
of stock status. We calculated the change in biomass as the
difference between the mean biomass over the last 10 years of
the hindcast period (2008–2017) and the last 10 years of the
projection period (2071–2080), divided by the mean biomass

TABLE 2 | The composition of trophic guilds.

Trophic guild Functional groups

Apex predators Albatross, arrowtooth flounder adult, deep demersal
fish, fulmars, Greenland turbot adult, ice seals,
Kamchatka flounder, kittiwakes, large sculpins, murres
and puffins, N. fur seals adult, N. fur seals juvenile,
other birds, Pacific cod adult, Pacific halibut adult,
pinnipeds, sablefish, sharks, skates, toothed whales,
transient killer whales

Benthic foragers Alaska plaice, arrowtooth flounder juvenile, flathead
sole, gray whales, northern rock sole, other flatfish,
Pacific cod juvenile, Pacific halibut juvenile, shallow
demersal fish, shortraker rockfish, walrus and bearded
seals, yellowfin sole

Motile epifauna Eelpouts, king crabs, motile epifauna, octopi, snow
crab, tanner crab

Pelagic foragers Atka mackerel, auklets, baleen whales, capelin,
Greenland turbot juvenile, herring, jellyfish, mycto-bathy,
northern rockfish, other rockfish, other forage, Pacific
ocean perch, rougheye rockfish, salmon returning,
salmon smolts, sandlance, squids, walleye pollock
adult, walleye pollock juvenile

Infauna Infauna, benthic zooplankton

Structural epifauna Structural epifauna

Shrimp and other
zooplankton

Pandalidae, other pelagic zooplankton

over the last 10 years of the hindcast period. The apex predator
guild includes 21 functional groups, benthic foragers includes
12, motile epifauna 6, and pelagic foragers 19. We did not
include infauna, structural epifauna, and shrimp and other
zooplankton in this analysis as those guilds consist of only one
or two functional groups and we therefore could not describe a
range of outcomes.

Sensitivity Analysis
A mass-balanced food web model represents only one of many
possible mass-balanced food web configurations. Additionally,
there are varying degrees of uncertainty about all the model
parameters, with some parameters being well supported by
data and others not. Simulations with alternative model
parameterizations could lead to divergent outcomes for species
and the food web. We evaluated the sensitivity of our projections
to parameter uncertainty using a Monte Carlo routine to generate
an ensemble of alternative Ecosim parameter sets from our
Ecopath model, following the approach of Whitehouse and Aydin
(2020). We conducted identical simulations with each ensemble
member to examine how sensitive our simulation results were
to uncertainty in parameter estimates (biomass, P/B, Q/B, diet
composition, and other mortality [M0]), and the predator-prey
functional response (i.e., vulnerability). We used a data pedigree
to describe the quality of the original parameter estimates. Each
pedigree score corresponds to a prescribed range as a proportion
of the original parameter estimate (coefficient of variation, CV).
Entire sets of Ecosim parameters were drawn from distributions
centered on the balanced model estimates and bounded by
their respective CVs. Vulnerability ranges from one to infinity
for each predator/prey link, and is centered on 2.0; the value
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represents the ratio of top–down to bottom–up control plus 1.0
(so the center of 2.0 represents a balance of top–down versus
bottom–up control). However, values beyond 91 are difficult to
distinguish from infinity (Gaichas et al., 2012), therefore, we
allowed vulnerability to vary from 1.01 to 91 using a log-uniform
distribution for all trophic links. The generated Ecosim parameter
sets were subjected to a 100-year burn-in to eliminate unstable
configurations (e.g., ecosystems with functional groups whose
biomass decreases to zero, or biomass grows without limit).
Each of the retained ecosystems was subjected to a simulation
with climate-forcing under the GFDL-RCP 8.5 emission scenario
and the status quo scenario of the fisheries sub-model. For each
retained ecosystem, we calculated the percent change in biomass
for each functional group as the change in the mean biomass from
the final 10 years of the simulation (2090–2099) relative to the
mean of the respective group’s biomass from the final 10 years
of the hindcast period (2008–2017). A more detailed description
of the sensitivity analysis can be found in the Supplementary
Material and in Whitehouse and Aydin (2020).

RESULTS

Lower Trophic Level Projections
Our food web model projected declining trends in annual
mean biomass for most lower trophic level functional
groups (Figure 4). Across the three downscaled projections,

Hermann et al. (2019) predicted a net decrease for the combined
biomass of small and large phytoplankton. These two primary
producer groups were modeled as separate functional groups
in our food web model. In our study area, small phytoplankton
biomass was projected to decrease by the end of the century
across all three earth system model projections and both RCPs.
However, large phytoplankton was projected to have a modest
biomass increase in the GFDL and CESM projections and a
more substantial increase in biomass was predicted under the
MIROC projection (Supplementary Figure 2). Euphausiids
gradually decrease through the rest of the century to values
near the minimum over the hindcast. Copepod biomass also
declined, and by mid-century was well below minimum values
observed during the hindcast. Pelagic and benthic microbes did
not show a clear trend and finished the century within the range
of values from the hindcast. Both pelagic and benthic detritus
pools decreased toward the end of the century and stabilized at
values below their mean values during the hindcast period.

Core Species
Under both RCPs, there was a general decline in the biomass of
core species by the end of the century to values that were near
or below the lowest values during the hindcast period (1991–
2017) (Figure 5). The trajectories were similar under the three
fishing scenarios, but for some species, distinct from the no-
fishing scenario. This was especially evident for Pacific cod and
yellowfin sole, which were subject to high exploitation rates

FIGURE 4 | Annual mean biomass projections for pelagic and benthic detritus and the projections for the functional groups forced with outputs from lower trophic
level modeling (euphausiids, copepods, pelagic microbes, benthic microbes, large phytoplankton, and small phytoplankton). The gray lines from 1991 to 2017
indicates the historical period. The purple and green polygons indicate the minimum and maximum range for the three earth system models run under each RCP.
The purple and green lines indicate the mean of the three runs for each RCP. The dashed lines indicate the minimum and maximum values from the historical period
and the solid black line indicates the mean value from the historical period.
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FIGURE 5 | Biomass projections for the core commercial species run under all four fishing scenarios. The gray lines from 1991 to 2017 indicates the historical
period. The purple and green polygons indicate the minimum and maximum range for the three earth system models run under each RCP. The purple and green
lines indicate the mean of the three runs for each RCP. The dashed lines indicate the minimum and maximum values from the historical period.

under the scenarios with fishing. When fishing was halted at the
start of the simulation period (2018) the biomass trajectories of
Pacific cod and yellowfin sole responded with sharp increases.
In contrast, the quota for northern rock sole is typically set well
below their ABC (Witherell, 1995; Wilderbuer et al., 2019) and
their biomass trajectory showed little change in response to the
halting of fishing.

The forecasted core species biomasses were similar among
emission scenarios, but there were some differences in transient

dynamics (Figure 5). The largest differences between RCPs
occurred over the period from 2025 to 2045. During this
window, all core species showed biomass peaks under RCP 8.5.
Additionally, the biomass trajectories generally tracked higher
under RCP 8.5 than under RCP 4.5 during these years. This
pattern is similar to the biomass peaks for phytoplankton and
zooplankton groups from the lower trophic level modeling and
the detritus pools under RCP 8.5, which are all near or above their
hindcast mean values during this time window. By 2060, the gap
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between biomass trajectories under the two RCPs was narrowing
and by 2080, they were virtually equivalent.

In general, there were only minor differences in catch for
most of the core species under the three fishing scenarios that
included catch (Figure 6). Under the gadid preference scenario,
the catch of pollock and Pacific cod was slightly higher than
under the status quo scenario. Pollock catch declined gradually
to values approximately equal to the lowest catches over the
hindcast period under all three fishing scenarios. The catch of
snow crab is highly variable but remains well above historical
lows through the end of the century.

The catch of arrowtooth flounder, northern rock sole, and
yellowfin sole were highest under the flatfish preference scenario
(Figure 6). Northern rock sole had the most visible change in
catch under the flatfish preference scenario. This was due to
the reallocation of a portion of the catch originally allocated to
gadids to flatfish, including northern rock sole. This reallocation
of quota produced the sharp changes in northern rock sole catch
under the flatfish preference scenario up through about mid-
century. There was an increase in the arrowtooth flounder catch
threshold under the flatfish preference; however, there were years
toward the end of the century under RCP 8.5, where catch was

FIGURE 6 | Catch projections for the core commercial species run under the three fishing scenarios that include fisheries catch. The gray line from 1991 to 2017
indicates the observed catch during the historical period. The purple and green polygons indicate the minimum and maximum range for the three earth system
models run under each RCP. The purple and green lines indicate the mean of the three runs for each RCP. The dashed lines indicate the historical minimum and
maximum values.
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below the threshold. This was because the biomass of arrowtooth
flounder had dropped below their target biomass in those years
and their ABC was on the “sloped” part of the harvest control
rule. The catch of yellowfin sole declined through 2080 and the
end of the century under all three fishing scenarios.

The catch trajectories for snow crab and Pacific cod had sharp
changes in catch at the start of the projection period (2018,
Figure 6). This was due to how we have simulated the harvest
control rule. Our target exploitation rate was based on the status
of the mass-balanced model during the base model time period
(i.e., early 1990s). So long as their biomass was at or above
their target biomass, these species would be subject to the target
exploitation rate. In the case of snow crab and Pacific cod, this
resulted in a jump in catch from the last year of the hindcast
period (2017) to the start of the projection (2018). Additionally,
the snow crab fishery is managed by the Alaska Department of
Fish and Game and catch quotas are determined with a different
harvest control rule than used in this study (NPFMC, 2020).

Marine Mammals and Seabirds
By 2080 the mean biomass trajectory for all marine mammal
and seabird groups were below their minimum value from the
hindcast period (Figures 7, 8). There were some increases in
biomass under RCP 8.5 during the 2030s, but the trajectories
declined thereafter. This pattern was due to fluctuations in prey
abundance, which reflected the trajectories of the lower trophic

level groups we have forced in these simulations. There were
brief peaks in the biomass of phytoplankton, microbes, copepods,
euphausiids, and detritus during the 2020s and 2030s under RCP
8.5 (Figure 4). These short-term increases by lower trophic level
groups were transmitted up the food web to marine mammals
and seabirds. Thereafter, the lower trophic level groups started
to decline and the upper trophic level groups that fed upon them
also started to decline. In particular, the decrease in copepods and
euphausiids affected zooplanktivorous predators. For example,
Auklets are particularly susceptible to declines in zooplankton
as they depend on copepods and euphausiids for more than
80% of their base diet composition. The declines in zooplankton
also drove declines in several forage fish species (e.g., herring,
capelin, sandlance, and squid), many of which comprise large
portions of the diet composition of piscivorous seabird and
marine mammal groups.

Trophic Guilds
The trophic guilds included all of the model’s functional groups,
not just federally managed groundfish; therefore, we focused
our results and discussion in this section on those projections
run under the status quo and no fishing scenarios. Across all
trophic guilds, RCPs and earth systems models, the food web
model predicted declining biomass by 2080 and beyond if fishing
was included (Figure 9). There was little observable difference
in trophic guild biomass projections under the three fishing

FIGURE 7 | Biomass projections for marine mammal functional groups. The gray line from 1991 to 2017 indicates the historical period. The purple and green
polygons indicate the minimum and maximum range for the three earth system models run under each RCP. The purple and green lines indicate the mean of the
three runs for each RCP. The dashed lines indicate the minimum and maximum values from the historical period.
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FIGURE 8 | Biomass projections for seabird functional groups. The gray line from 1991 to 2017 indicates the historical period. The purple and green polygons
indicate the minimum and maximum range for the three earth system models run under each RCP. The purple and green lines indicate the mean of the three runs for
each RCP. The dashed lines indicate the minimum and maximum values from the historical period.

scenarios with catch (Supplementary Figure 2). Peak projected
biomass values for all the guilds under RCP 8.5 were visible up
to about mid-century. After that time, a decline in biomass was
predicted, and by 2080, most of the trajectories under both RCPs
were near the lowest values observed during the hindcast period.

The motile epifauna, shrimp and other zooplankton, infauna,
and structural epifauna guilds are dominated by invertebrates
and showed little difference between the status quo and no
fishing scenarios. The biomass trajectories for motile epifauna
and the shrimp and other zooplankton guilds were slightly
lower under the no fishing scenario. This was because several
important predators of these guilds are commercial groundfish
whose biomass, and thus consumption, increased under the no
fishing scenario. The infauna and structural epifauna guilds are
heavily dependent on primary production and detritus pools, and
this was reflected in their biomass trajectories, the shape of which
is similar to the projections for small phytoplankton and benthic
and pelagic detritus (Figure 2).

All of the groundfish managed under the ecosystem cap
are members of either the apex predators, benthic foragers, or
pelagic foragers feeding guilds. The biomass dynamics of the
apex predator guild were driven largely by Pacific cod, which
are a biomass dominant component of this guild. The benthic
foragers guild includes several flatfishes, including yellowfin sole
and northern rock sole. These two flatfish species account for
more than half of the total biomass of this guild and drive the
guild dynamics. Similarly, the trajectory for the pelagic foragers
guild was driven by pollock, which account for about half of the
biomass of this guild.

For most functional groups within the apex predators, benthic
foragers, motile epifauna, and pelagic foragers guilds there was a
decline in biomass between the “present” and 2080 (Figure 10).
However, some functional groups did increase in biomass.
This occurred most frequently under the no fishing scenario.
Within the apex guild, groups whose biomass increased over

the simulation included Pacific cod (adults), skates, sharks, and
Pacific halibut (Supplementary Figure 6). In the benthic foragers
guild, Pacific cod juveniles, yellowfin sole, and Alaska plaice
all experienced biomass increases under the no fishing scenario
(Supplementary Figure 7). Among pelagic foragers, returning
salmon, Pacific ocean perch, jellyfish, and other rockfish all
experienced biomass increases under the no fishing scenario
(Supplementary Figure 8). There were no scenario combinations
where any groups within the motile epifauna guild experienced
an increase in biomass (Supplementary Figure 9). The biomass
projections for all remaining functional groups can be found in
Supplementary Figures 10–12.

Within an earth system model-RCP combination, there was
little difference in the outcomes between the three fishing
scenarios that included catch (fishing scenarios 1–3 in Figure 10).
The outcomes were generally higher for most groups within
the apex predators, benthic foragers, and pelagic foragers guilds
under the no fishing scenario (scenario 4 in Figure 10) than
under the status quo scenario in each of the earth system model-
RCP combinations. However, motile epifauna had generally
lower biomass under the no fishing scenario. This was due
to an increase in predation pressure from commercially fished
predators whose biomass increased when there was no fishing.

Within each earth system model, and across these four trophic
guilds, there was very little difference in the 2080 outcomes
between the two RCPs, indicating that the differences between
these climate-forcing scenarios did not sufficiently manifest
themselves among the variables we used for climate forcing in this
study. A greater distinction in 2080 outcomes is evident between
the earth system models (Figure 10).

Sensitivity to Parameter Uncertainty
We generated 2.55 million Ecosim parameter sets for our
sensitivity analysis, of which, 2,057 parameter sets survived the
burn-in period and were retained for analysis. The distribution
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FIGURE 9 | Biomass projections for trophic guilds under the status quo and
no fishing scenarios. The gray lines from 1991 to 2017 indicates the historical
period. The purple and green polygons indicate the minimum and maximum
range for the three earth system models run under each RCP. The purple and
green lines indicate the mean of the three runs for each RCP. The dashed lines
indicate the minimum and maximum values from the historical period.

of biomass outcomes were wide for many functional groups.
However, we found the median outcome, and 75% of the
retained parameter sets, at the end of the century for the

majority of functional groups to be in directional agreement
with the simulations presented here (Supplementary Figure 4).
The qualitative direction of change was in agreement with our
simulations for most of the generated parameter sets.

DISCUSSION

This work integrates multiple models to see how one
mechanism—food web dynamics—might contribute to changes
on population dynamics, community composition, and fishery
catches under climate change. Our results indicate the bottom-up
effects of projected climate change on the eastern Bering Sea
could propagate through all levels of the food web, including
marine mammals and seabirds. We found the biomass of most
foraging guilds, individual species, and functional groups to
decline gradually through 2080 under both RCP 4.5 and 8.5.
The gradual declines predicted for primary (phytoplankton)
and secondary producer biomass (zooplankton and microbes)
drove declines in detritus pools, and ultimately were transmitted
up the food web to all trophic levels, including commercially
important groundfish and crabs. For some of the commercial
groundfish species, increases in biomass by the end of the
century could be realized under anticipated climate change
when there was no fishing. This suggests that for some species
the pressure from fisheries may be more significant than any
negative pressure from the simulated climate forcing. Some
commercial crab and benthic invertebrate groups had lower
biomass when there was no fishing due to increased predation
from commercial groundfish predators. By 2080, there was little
distinction between the biomass trajectories subject to the high
or intermediate emission scenarios for many of the groups, and
a greater distinction in outcomes could be observed due to the
earth system models. This indicates that by the end of the century
the structural uncertainty in our simulations due to different
earth system models was greater than the scenario uncertainty
due to different emission pathways.

Fisheries can have a range of potential impacts on species and
the ecosystem, and there is no single best way to forecast those
impacts using a food web model. One approach commonly used
with EwE models is to hold the fisheries mortality of targeted
species at a constant value equal to present day fishing mortality,
or held constant at a multiple of present day fishing mortality
(e.g., Brown et al., 2010; Ainsworth et al., 2011; Niiranen et al.,
2013; Bentley et al., 2017; Serpetti et al., 2017; Corrales et al.,
2018; Fulton et al., 2018). However, neither of these scenarios
mimic the actual way fisheries are managed in the eastern
Bering Sea. Consequently, we incorporated a fisheries sub-
model into our simulations that provided dynamic projections
of annual catch quotas for US federally managed groundfish in
the eastern Bering Sea in response to the changing status of
managed stocks and in accordance with the existing fisheries
management paradigm (Faig and Haynie, 2019). The constraint
of the ecosystem harvest cap in the Bering Sea requires managers
to consider social and economic tradeoffs when allocating quota
under the cap. This leads to some stocks being fished well
below the maximum sustainable fishing levels determined in
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FIGURE 10 | The percent change in biomass for functional groups between the end of the hindcast period (2008–2017) and the end of the projection period for the
two RCPs (2071–2080). Each of the four panels is for one of the trophic guilds. Each box-and-whisker shows the percentage change in biomass for all the functional
groups within the specified trophic guild by the earth system model-RCP-fishing scenario combination. The earth system models are labeled at the top of each
panel. For each earth system model there are two RCPs, 4.5 is shown in green and 8.5 in purple. The fishing scenarios are labeled on the x-axis (1 = status quo,
2 = catch more gadids, 3 = catch more flatfish, 4 = no fishing). Outliers are shown with empty circles.

stock assessments (Witherell et al., 2000). The fisheries sub-
model predicted annual catch quotas given these cap-induced
tradeoffs and region-specific management practices (Faig and
Haynie, 2019).

The gradual declines in biomass for most species and
functional groups in our projections of the eastern Bering Sea
food web are in directional agreement with other regional and
global multi-species modeling studies forecasting fish and total
animal biomass through the end of the century. At high latitudes,
in particular the Arctic Ocean, total animal biomass is predicted
to increase due to a confluence of factors including increased
primary production, warming temperatures, and poleward range
expansions of productive, commercial, temperate species into the
Arctic (Cheung et al., 2009; Fossheim et al., 2015; Lefort et al.,
2015; Bryndum-Buchholz et al., 2019; Lotze et al., 2019). At
lower latitudes, global projections are less decisive and there are
mixed outcomes that may vary according to structural, scenario,
and parameter uncertainty (Lotze et al., 2019). In comparison
to global models that include projected total biomass declines
in the eastern Bering Sea (Bryndum-Buchholz et al., 2019; Lotze
et al., 2019), the declines we projected in this study are modest,
and the range of uncertainty in our simulations allows for the
maintenance of biomass for many species, or in some cases an
increase in biomass.

The biomass declines we projected for many species are
smaller in magnitude, in part, due to how we implemented

climate forcing in our study and the absence of some other
climate-related processes and direct effects that would influence
the future trajectories of species. Previous studies in other regions
have simulated the effects of anticipated climate change using
EwE models by forcing the production rate of phytoplankton
to be consistent with projections from earth system models
(Brown et al., 2010; Ainsworth et al., 2011; Howell et al.,
2013; Niiranen et al., 2013; Watson et al., 2013; Suprenand
and Ainsworth, 2017; Fulton et al., 2018; Ehrnsten et al.,
2019), or by scaling predator consumption by their thermal
tolerance and forecasted temperature change (Bentley et al.,
2017; Serpetti et al., 2017; Corrales et al., 2018), or by scaling
reproductive output to climate forecasts (Niiranen et al., 2013;
Ehrnsten et al., 2019). Alternatively, we have linked our
food web model to a climate-enhanced regional ocean and
biogeochemical model to represent the biomass dynamics of key
lower trophic level groups. By fixing the biomass trajectories
of these lower trophic level groups in this manner, their
biomass dynamics are not subject to top–down pressure. Our
results are strictly limited to the bottom-up effects of forecasted
reductions in primary and secondary producer biomass on the
food web, as mediated by the network of trophic interactions.
Including the direct physiological effects of temperature in future
simulation studies could result in more pronounced declines
for species when temperatures exceed their thermal envelopes,
and more pronounced increases in biomass for species with
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a higher thermal tolerance who can take advantage of the
changing conditions.

The biomass and catch trajectories from our model are limited
projections of potential climate impacts in the eastern Bering
Sea as they are constrained by the processes represented in
our food web model and to the nature of climate forcing used
in our simulations. The outputs from the Bering10K model
used to simulate climate forcing integrate the direct effects of
temperature and other biophysical forces on those lower trophic
levels (Gibson and Spitz, 2011; Hermann et al., 2019). For
example, the BESTNPZ model included temperature-dependent
mortality of large zooplankton, as a proxy for temperature-
dependent predation. However, our food web model does not
explicitly consider the direct biophysical effects of climate change
on the remainder of the food web. Temperature will directly
impact the physiology, behavior, and performance of ectotherms
(Portner and Peck, 2010), drive species distribution shifts
(Mueter and Litzow, 2008; Frainer et al., 2017; Stevenson and
Lauth, 2019), and facilitate the introduction of non-indigenous
species from warmer regions (Cheung et al., 2015; Alabia et al.,
2018; Droghini et al., 2020). We did not examine the direct effects
of climate change on physiological processes in this study and
leave that for future work.

The direct physiological effects of temperature may attenuate
or accentuate the indirect effects of climate change represented
in our food web model. Methods to incorporate the direct
effects of temperature on organisms have been developed for
EwE (e.g., Bentley et al., 2017; Serpetti et al., 2017) but similar
methods have not yet been developed for Rpath. The biological
reference points we used with our harvest control rules are
rooted in the static, mass-balanced model configuration and the
environmental conditions of the base model time-period of the
early 1990s. Under the projected environmental conditions those
biological reference points (e.g., target biomass) may no longer
be valid in the future and updated values should be calculated
to reflect the stock’s current productivity (Haltuch et al., 2009).
Other considerations for future simulations include the effects of
ocean acidification, deoxygenation, loss of habitat (e.g., sea ice),
and emigration or invasion of new species from adjacent regions.

The declines in biomass across most groups in the eastern
Bering Sea through the end of the century in our study are
similar to the findings of other climate-enhanced multi-species
models from the ACLIM project. Reum et al. (2020) used a multi-
species size-spectrum model to make biomass projections of the
eastern Bering Sea food web and found on average that spawning
stock biomass for the groundfish community declined through
the end of the century. However, they found the direction of
trend in biomass among several groundfish species did not agree
across all climate change scenarios. Holsman et al. (2020) used a
multi-species statistical catch-at-age model to make projections
for pollock, Pacific cod, and arrowtooth flounder through the
end of the century and similarly observed declining biomass
for all three species under RCPs 4.5 and 8.5. A key distinction
between our simulations and those of Holsman et al. (2020)
and Reum et al. (2020) is that we did not include the direct
effects of temperature on biological processes and instead focused
on the impacts of climate-induced changes at lower trophic

levels on the whole food web. The declines in biomass that
we observed for pollock and Pacific cod in our simulations are
minor in comparison to these other two studies, and in the case
of arrowtooth flounder, are not in directional agreement with
Reum et al. (2020). The more comprehensive network of trophic
interactions in our Rpath model provides additional detail on
trophic interactions across the whole food web but lacks the
physiological detail of temperature effects included in these other
two studies. Additionally, there are many other differences in
the structural assumptions made by these modeling frameworks,
which may contribute substantially to projection results differing
in direction or magnitude (Jacobsen et al., 2016). The structural
differences between the suite of biological models included in the
ACLIM project are an advantage of the multi-model ensemble
approach, and these differences will be utilized in future work
to help quantify structural uncertainty in ensemble projections
(Hollowed et al., 2020).

Uncertainty in our projections is present at multiple levels of
the modeling hierarchy and should be taken into consideration
when interpreting the results. The outputs of our simulations are
quantitative, and it is tempting to view the trajectories as accurate
or precise projections. However, they stem from a single model
configuration and are subject to initialization and parameter
uncertainty, in addition to scenario and structural uncertainty
(Payne et al., 2016). Knowledge of forecasts and projections
can potentially influence the decision-making process, therefore
it is important that simulation results are viewed in the
appropriate context (Hobday et al., 2019). Our projections
are best interpreted in a qualitative manner, in terms of
the direction of change and the agreement across simulation
scenarios (Ainsworth et al., 2011).

Our use of multiple climate and fishing scenarios is a start to
addressing scenario uncertainty but only accounts for a limited
portion of this uncertainty. Scenario uncertainty is due to an
inability to know what the full potential range of future outcomes
includes. RCPs 8.5 and 4.5 represent upper and intermediate
levels of warming, respectively, among the RCPs available, but we
did not include RCP 2.6 in our modeling framework (Hollowed
et al., 2020), which is a pathway with high levels of mitigation
and low greenhouse gas emissions. Including the lowest emission
scenario may have provided additional contrast in the outcomes
and revealed interactions between fisheries and climate that were
not present in our current simulations, and would have presented
a broader picture of scenario uncertainty due to climate.

Our fisheries scenarios are rooted in the existing fisheries
management paradigm and historical management decisions.
Thus, they do not reflect conditions that exist outside the
historical record and cannot predict how future management
decisions under unprecedented conditions may differ from
historical practices. The portion of scenario uncertainty due to
human responses to unforeseen or unprecedented conditions is
irreducible in many respects, and will likely always be present
to some degree in any future projections (Hawkins et al., 2016;
Payne et al., 2016; Planque, 2016).

Structural uncertainty is due to a limited understanding
of the processes and mechanisms that determine population
and ecosystem dynamics and are represented with simplified
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processes in models. To help address structural uncertainty,
we used three earth system models to project future climate.
The importance of structural uncertainty can be seen in our
projection outcomes at 2080, where a greater distinction in
outcomes is seen between earth system models as opposed to
between the two RCPs (Figure 10). This outcome emphasizes
the importance of using multiple earth system models in climate
projections with biological models, and highlights how important
the selected earth system models can be in determining the
end of century outcomes. Frölicher et al. (2016) found that
most uncertainty in century-scale projections of net primary
production with earth system models was attributed to structural
uncertainty, followed by scenario uncertainty. This result is
similar to the findings of Reum et al. (2020) who observed
that uncertainty in projections with a multi-species size-
spectrum model up to mid-century was primarily due to the
climate scenario, but thereafter it was primarily due to the
earth system model.

The total uncertainty in our Rpath projections also includes
the uncertainty present in the earth system models and the
oceanographic and lower trophic level modeling, whose outputs
drive our projections. The uncertainty in previous steps in the
model hierarchy accumulates in our model, adding to the total
uncertainty (Payne et al., 2016). An additional source of structural
uncertainty in the ACLIM modeling framework is the use of a
single ocean and biogeochemical model. The Bering10K model
provides the biological indices used to simulate climate forcing
in our Rpath projections. While the Bering 10K outputs have
demonstrated skill at projecting physical, thermal, and nutrient
dynamics, room for improvement remains with the skill of
reproducing primary and secondary production group dynamics
(Kearney et al., 2020). We acknowledge that these biological
variables with lower skill are those variables we are using to
simulate climate change within our Rpath model.

The risk of climate change impacts on the eastern Bering Sea
food web persists under both the business-as-usual (RCP 8.5)
and the moderate emission scenario (RCP 4.5). The best way
to limit the impacts of climate change on marine ecosystems
and fisheries is to reduce greenhouse gas emissions (Cheung
et al., 2016; Gattuso et al., 2018). In the face of climate change
impacts, the long-term sustainability of fisheries can be best
ensured with effective ecosystem-based fisheries management
that is responsive to the impacts of climate change on species and
the food web (Gaines et al., 2018; Fulton et al., 2019; Free et al.,
2020; Holsman et al., 2020). Our climate-enhanced projections
with Rpath can support fisheries managers by contributing to an
improved understanding of the long-term effects of forecasted
climate change on commercial and non-commercial species,
and in consideration of region-specific policies and tradeoffs
confronting fisheries managers. We incorporated a fisheries sub-
model that could emulate region-specific management practices
and make dynamic catch predictions during the simulations,
which provided additional detail over the alternative of using a
constant multiplier of present day fishing mortality. Our model
projections are one part of a larger ensemble of biological models
in the ACLIM project that will be jointly considered in future
work to quantify different sources of uncertainty and provide a

more comprehensive suite of future projections for the eastern
Bering Sea (Hollowed et al., 2020). While our Rpath projections
are not suited to inform tactical management decisions, as they
do not include adequate measures of uncertainty or the likelihood
of different outcomes, our method for incorporating climate and
fisheries into food web projections can serve as a starting point
for future studies that consider additional climate stressors and
more comprehensive accounting of uncertainty.
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